跳转至


课程  因子投资  机器学习  Python  Poetry  ppw  tools  programming  Numpy  Pandas  pandas  算法  hdbscan  聚类  选股  Algo  minimum  numpy  algo  FFT  模式识别  配对交易  GBDT  LightGBM  XGBoost  statistics  CDF  KS-Test  monte-carlo  VaR  回测  过拟合  algorithms  machine learning  strategy  python  sklearn  pdf  概率  数学  面试题  量化交易  策略分类  风险管理  Info  interview  career  xgboost  PCA  wavelet  时序事件归因  SHAP  Figures  Behavioral Economics  graduate  arma  garch  人物  职场  Quantopian  figure  Banz  金融行业  买方  卖方  story  量化传奇  rsi  zigzag  穹顶压力  因子  ESG  因子策略  投资  策略  pe  ORB  Xgboost  Alligator  Indicator  factor  alpha101  alpha  技术指标  wave  quant  algorithm  pearson  spearman  tushare  因子分析  Alphalens  涨停板  herd-behaviour  momentum  因子评估  review  SMC  聪明钱  trade  history  indicators  zscore  波动率  强化学习  顶背离  freshman  resources  others  AI  DeepSeek  network  量子计算  金融交易  IBM  weekly  LLT  backtest  backtrader  研报  papers  UBL  quantlib  jupyter-notebook  scikit-learn  pypinyin  qmt  xtquant  blog  static-site  duckdb  工具  colors  free resources  barra  world quant  Alpha  openbb  数据  risk-management  llm  prompt  CANSLIM  Augment  arsenal  copilot  vscode  code  量化数据存储  hdf5  h5py  cursor  augment  trae  Jupyter  jupysql  pyarrow  parquet  数据源  quantstats  实盘  clickhouse  notebook  redis  remote-agent  AI-tools  Moonshot  回测,研报,tushare 

arsenal »

Don't fly solo! 量化人如何使用AI工具


在投资界,巴菲特与查理.芒格的神仙友谊,是他们财富神话之外的另一段传奇。巴菲特曾这样评价芒格:他用思想的力量拓展了我的视野,让我以火箭的速度,从猩猩进化到人类。

人生何幸能得到一知己。如果没有这样的机缘,在AI时代,至少我们做量化时,可以让AI来伴飞。

这篇文章,分享我用AI的几个小故事。


在讲统计推断方法时,需要介绍分位图(Quantile-Quantile Plot)这种可视化方法人类天生就有很强的通过视觉发现pattern的能力,所以介绍这种可视化方法几乎是不可缺少的。

左偏、正态和右偏分布的QQ图示例

但当时在编这部分教材时,我对QQ-plot的机制还有一点不太清晰:为什么要对相比较的两个随机变量进行排序,再进行绘图?为什么这样绘图如果得到的是一条直线,就意味着两个随机变量强相关?难道不应该是按随机变量发生的时间顺序为序吗?

启用GPT-4的多角色数据科学家扮演

这个问题无人可请教,哪怕我搜遍全网。后来,即使我通过反复实验和推理,已经明白了其中的道理,但毕竟这个知识点似乎无人提及过,心里多少有点不确定。于是,我请教了GPT-4。


最初的几次尝试没有得到我想要的结论,于是,我用了一点技巧,要求GPT-4把自己想像成为数据科学家。并且,为了避免错误,我使用了三个数据科学家进行角色扮演,让A和B分别提出观点,再让C来进行评论,这一次,我得到了非常理想的结果,即使请教人类专家可能亦不过如此。

先给GPT-4提供问题背景:

Quote

Q-Q图的原理是,如果X是一个有序数据集,那么[X, X]在二维平面上的图像一定是一条45度角的直线。

如果我们有随机变量X和设想中的理论分布Y,如果随机变量X服从估计中的理论分布Y,那么就应该有:

在50%分位处,X的采样点\(x_1\)应该与50%分位处的\(y_1\)非常接近(由于是随机变量,所以也很难完全相等);在25%分位处,75%分位处,或者进一步推广,在任意分位数处,两者的采样都非常接近。

在实际绘图中,我们的做法是,假设X服从正态分布,共有n个数据,我们先对X进行z-score变换,然后从标准正态分布中,也随机抽样取n个数,记为Y,对两个数组都进行排序后,对[X, Y]进行绘图,如果它的图形接近于直线,则说明X服从正态分布。

从背景可以看出,我已经掌握了QQ图的大致原理。如果X与Y是同分布的,那么,将X,Y排序后,分别以\([I,X]\)\([I,Y]\)\(I\)为数组坐标)为点绘制的曲线,将会是相似曲线。


但QQ图将其进行了变换,直接取每一个坐标\(I_i\)对应的\(X_i\)\(Y_i\)作为曲线的坐标,从而将只绘制出一条曲线。如果二者同分布,则该曲线将是一条直线。当时我对这个变换的性质还不太了解。

我的问题一共有4个:

Question

  1. 这段话中是否有事实错误?
  2. 如果不对X进行z-score化,这样[X,Y]还会是直线吗?
  3. n值对绘制图形的影响是?
  4. 假设X确实服务正态分布,从标准正态分布中进行抽样得到的Y,是如何保证它与X一一对应的?

最后一问,实际上就是要问这个变换为什么能成立。

GPT-4的角色 -- 数据科学家A发现了背景中第一段的一个错误。\([X,X]\)的图像为45度直线的条件并不需要\(X\)是有序的。任何数据集的\([X,X]\)图像都会是45度直线(显然)。对于第2问,A的回答是:

Quote

If we don't standardize X (i.e., perform a z-score transformation), the Q-Q plot may not form a 45-degree line. The reason we standardize is to put X and Y on the same scale, which makes it easier to compare them.


对于第三问,数据科学家A认为:

Quote

The number of data points (n) can affect the Q-Q plot in terms of its granularity. The more points we have, the smoother and more precise the plot will be. However, even with a small n, if the data follows the theoretical distribution, the points should still fall roughly along the line of equality.

n只影响图像的平滑度和我们判断时的精度。这一点非常准确。但我最关注的是第四位,随机变量X与Y究竟是如何对应的,为什么可以将它们按大小排序?A的回答是:

Quote

Y, sampled from a standard normal distribution, does not necessarily correspond one-to-one with X in terms of specific data points. Instead, it corresponds to X in terms of the order of data points. When we sort X and Y, the smallest value of X is paired with the smallest value of Y, the second smallest with the second smallest, and so on.

答案几乎已经呼之欲出了。即使两个随机变量服从同一分布,它们的值也不会相等,但是,出现在同一位置上的随机变量值,它们的差值会很小。因此,这样绘制出来的图,就是一条45度直线。

B和C主要是对A的结论进行质疑、比较,这里不赘述了。


无论A、B还是C都没有给出最终的解释:为什么如果随机变量X和Y服从同一分步的话,那么在同一位置i处的\(X_i\)\(Y_i\)应该是接近的。但它们确实证实了我们绘制QQ图之前,先对随机变量进行排序的思路是正确的。

Info

关于这一点,应该从CDF/PPF的概念入手来理解。如果\(X\)\(Y\)是同分布的,那么在任一分位\(i\)上,随机变量的值(通过ppf,即cdf的逆函数来计算)都应该非常接近。而排序后的数组,其坐标天然就有了分位数的意义。既然\(X\)\(Y\)在任一坐标\(i\)上都应该接近,那么点\(X_i, Y_i\)就应该落在直线\(y=x\)上。这个变换的作用,是利用人眼对直线更为敏感的现象,把不易分辨的两条曲线相似度的检测,转换成一条曲线是否为直线的检测。

事实上,这一概念在英文wiki上解释的比较清楚。但我当时只看了中文的wiki。

如果上述概念还不好理解,我们可以再举一个更直观的例子。通过QQ图来判断两个证券标的是否存在强相关性。比如,我们以两支同行业个股为例,取它们最近250期日线,计算每日回报率,对其进行排序后绘图:

1
2
3
4
5
6
7
8
9
import matplotlib.pyplot as plt

r1 = hchj["close"][1:]/hchj["close"][:-1] - 1
r2 = xrhj["close"][1:]/xrhj["close"][:-1] - 1

plt.scatter(sorted(r1), sorted(r2))
x = np.linspace(np.min(r1), np.max(r1), 40)
plt.plot(x,x, '-', color='grey', markersize=1)
plt.text(np.max(r1), np.max(r1), "x=x")

我们将得到如下的分位图:

这就非常直观地显示出,两支个股的走势确实相关:在涨幅4%以下的区域,如果A下跌,那么B也下跌,并且幅度都差不多;如果A上涨,那么B也上涨;幅度也差不多。这正是相关性的含义。这里我们排除了时间,只比较了两个随机变量即日收益率。

Tip

注意看这张图中涨幅大于4%的部分。它意味着,某个标的涨幅大于4%时,另一个标的的上涨幅度没有跟上。这里可能隐藏了潜在的机会。你知道该怎么分析吗?


跟着copilot学编程

有两个版本的copilot。一个是copilot,另一个,现在被叫作github copilot,是vscode中的一个扩展。后者2022年中就发布了,当时有6个月的免费试用期。试用期内一炮而红,迅速开启了收费模式。这也直接导致了同年11月同赛道的工具软件Kite的退出。

现在github copilot每月$10,尽管物有所值,但作为不是每天都coding的人来说,感觉如果能推出按token付费的模式是最好了。

它的两个免费版本,一个是对学生免费。有edu邮箱的可以抓紧在github上申请下。另一个是如果你的开源项目超过1000赞,则有机会申请到免费版。

一般我使用copilot作为编程补充。它在错误处理方面可以做得比我更细腻,另外,在写单元测试用例时(建议每个量化人都坚持这样做),自动补齐测试数据方面是一把好手。

但是我没有想到的是,有一天它还能教我学编程,让我了解了一个从来没有听说过的Python库。

整个事情由ETF期权交割日引起。近年来似乎形成了这样一个规律,每逢期权交割日,A股的波动就特别大,而且以向下波动为主。因此,量化程序需要把这些交割日作为因子纳入交易体系。


但是这些交割日的确定,出入意料地--。它的规则是:

股指期货的交割日为每月的第三周周五;ETF期权交割日为每月第四周的周三;A50交割日为相关月的倒数第二个交易日。

在刚刚过去的4月19日,是一个股指期货交割日。接下来的4月24日,则是ETF交割日。今年的交割日如下:


随手写了几行代码,发现这个日子还是比较难算的。于是打开copilot chat,问它:

Quote

股指期货的交割日为每月的第三周周五;ETF期权交割日为每月第四周的周三;A50交割日为相关月的倒数第二个交易日。

根据上述信息,写一个方法,求出2018年到2024年12月31日止的各个交割日。

Copilot并不知道股市日历,所以无法独立完成上述任务。这并不奇怪。令人惊喜地是,它使用了calendar.monthcalendar这个方法。尽管calendar是一个标准库,但我之前并不知道它还有这个用法。

1
2
3
import calendar

calendar.monthcalendar(2024, 4)

75%


在这个基础上改就容易多了。另一个有趣的例子,是让copilot帮我想函数名。

我喜欢使用这样一个因子,最近20天内,涨幅中位数与跌幅中位数的比率。显然,这个比值越大,说明做多的力量越强。

最初我使用caculate_ratio这个函数名。但几乎所有的因子计算都可以使用这个名字。因此,我让copilot给一个准确点的名字。copilot回答说,根据函数的功能,我们可以将函数名从calculate_ratio改为calculate_downward_exceeding_upward_median_ratio。这个名字更准确地描述了函数的功能:计算下跌幅度超过上涨中位数的比例。

不过,这个名字太长了,也不优雅。于是,我问copilot,名字可以再短一点吗?可以使用metaphore吗?Coplilot回答说:

Quote

当然可以。我们可以使用"bear_bull_ratio"作为函数名。这个名字较短,且使用了金融市场的术语"bear"和"bull",分别代表市场下跌和上涨,这样可以更好地传达函数的含义。