跳转至


课程  因子投资  机器学习  Python  Poetry  ppw  tools  programming  Numpy  Pandas  pandas  算法  hdbscan  聚类  选股  Algo  minimum  numpy  algo  FFT  模式识别  配对交易  GBDT  LightGBM  XGBoost  statistics  CDF  KS-Test  monte-carlo  VaR  回测  过拟合  algorithms  machine learning  strategy  python  sklearn  pdf  概率  数学  面试题  量化交易  策略分类  风险管理  Info  interview  career  xgboost  PCA  wavelet  时序事件归因  SHAP  Figures  Behavioral Economics  graduate  arma  garch  人物  职场  Quantopian  figure  Banz  金融行业  买方  卖方  story  量化传奇  rsi  zigzag  穹顶压力  因子  ESG  因子策略  投资  策略  pe  ORB  Xgboost  Alligator  Indicator  factor  alpha101  alpha  技术指标  wave  quant  algorithm  pearson  spearman  tushare  因子分析  Alphalens  涨停板  herd-behaviour  momentum  因子评估  review  SMC  聪明钱  trade  history  indicators  zscore  波动率  强化学习  顶背离  freshman  resources  others  AI  DeepSeek  network  量子计算  金融交易  IBM  weekly  LLT  backtest  backtrader  研报  papers  UBL  quantlib  jupyter-notebook  scikit-learn  pypinyin  qmt  xtquant  blog  static-site  duckdb  工具  colors  free resources  barra  world quant  Alpha  openbb  数据  risk-management  llm  prompt  CANSLIM  Augment  arsenal  copilot  vscode  code  量化数据存储  hdf5  h5py  cursor  augment  trae  Jupyter  jupysql  pyarrow  parquet  数据源  quantstats  实盘  clickhouse  notebook  redis  remote-agent  AI-tools  Moonshot  回测,研报,tushare 

arsenal »

为了机器能学习,我标注了 2 万条行情数据


芝加哥大学海德公园。芝大是经济学重镇,其学者开创了著名的芝加哥经济学派,共产生了 100 位诺奖、10 位菲尔兹奖、4 位图灵奖。今天量化人追逐的 Alpha, 最早就来自于 Michael Jessen 在芝大时的博士论文。


很多人对基于机器学习的量化策略很好奇,常常问什么时候有机器学习的课。其实,对很多人(我自己就是)来说,没有能力改进机器学习的算法和框架,机器学习都是作为黑盒子来学习,难度主要是卡在训练数据上。

这篇文章,将介绍一种数据标注方法和工具。

有监督的机器学习需要标注数据。标注数据一般是一个二维矩阵,其中一列是标签(一般记为 y),其它列是特征(一般记为 X)。训练的过程就是:

$$

fit(x) = WX -> y' \approx y

$$

训练就是通过反向传播来调整权重矩阵\(W\),使之得到的\(y'\)最接近于\(y\)

特征矩阵并不困难。它可以是因子在某个时间点上的取值。但如何标注是一个难题。它实际上反应的是,你如何理解因子与标签之间的逻辑关系:因子究竟是能预测标的未来的价格呢,还是可以预测它未来价格的走势?

应该如何标注数据

前几年有一篇比较火的论文,使用 LSTM 来预测股价。我了解到的一些人工智能与金融结合的硕士专业,还把类似的题目布置给学生练习。


作为练习题无可厚非,但也应该讲清楚,使用 LSTM 来预测股价的荒谬之处:你无法利用充满噪声的时序金融数据,从价格直接推导出下一个价格。

坊间还流传另一个方法,既然数据与标签之间不是逻辑回归的关系,那么我们把标签离散化,使之转换成为一个分类问题。比如,按第二天的涨跌,大于 3%的,归类为大幅上涨;涨跌在 1%到 3%的,归类为小幅上涨。在-1%到 1%的,归类为方向不明。

其实这种方法背后的逻辑仍然是逻辑回归。而且,为什么上涨 2.99%是小幅上涨,上涨 3%就是大幅上涨呢?有人就提出改进方法,在每个类之间加上 gap,即 [-0.5%, 0.5%] 为方向不明,[1%,3%] 为小幅上涨,而处在 [0.5%, 1%] 之间的数据就丢掉,不进行训练。这些技巧在其它领域有时候是有效的,但在量化领域,我认为它仍然不够好。因为原理不对。

我们应该回归问题的本质。要判断每一天的涨跌,其实是有难度的。但如果要判断一段趋势是否结束,则相对来讲,特征会多一点,偶然性会低一点。用数学语言来讲,我们可以把一段 k 线中的顶点标注为 1,底部标注为-1,中间的部分都标注为 0。每一个峰都会有一个谷对应,但中间的点会显著多一些,数据分类不够平衡。在训练时,要做到数据分类平衡,把标签为 0 的部分少取一点即可。


顶底数据的标注

鉴于上面的思考,我做了一个小工具,用来标注行情数据的顶和底。

这个工具要实现的任务是:

  1. 加载一段行情数据,绘制 k 线图
  2. 自动识别这段 k 线中的的顶和底,并在图上标记出来
  3. 把这些顶和底的时间提取出来,放到峰和谷两个编辑框中,供人工纠错
  4. 数据校准后,点击“记录 > 下一组"来标注下一段数据

我们使用 zigzag 库来自动寻找 k 线中的顶和底。相比 scipy.signals 包中的 argrelextrema 和 find_peaks 等方法,zigzag 库中的 peaks_valleys_pivot 方法更适合股价数据 -- 像 find_peaks 这样的方法,要求的数据质量太高了,金融数据的噪声远远超过它的期待。

peaks_valleys_pivot 会自动把首尾的部分也标记成为峰或者谷 -- 这在很多时候会是错误的 -- 因为行情还没走完,尾部的标记还没有固定下来。因此,我们需要手动移除这部分标记。此外,偶尔会发现峰谷标记太密的情况 -- 一般是由于股价波动太厉害,但如果很快得到修复,我们也可以不标记这一部分。这也需要我们手动移除。

最终,我们将行情数据的 OHLC、成交量等数据与顶底标记一起保存起来。最终,我们将得到类似下面的数据:

当然,它只能作为我们训练数据的一个底稿。我们说过,不能直接使用价格数据作为训练数据。我们必须从中提取特征。显然,像 RSI 这样的反转类指标是比较好的特征。


另外,冲高回落、均线切线斜率变化(由正转负意味着见顶,反之意味着见底)、两次冲击高点不过、k 线 pattern 中的早晨之星、黄昏之星(如果你将它们的 k 线进行 resample, 实际上它是一个冲高回落过程,或者说长上影、长下影)等等都是有一定指示性的特征。

标注工具构建方法

Tip

这里我们介绍的是 jupyter 的 ipywidgets 来构建界面的方法。此外,Plotly Dash, streamlit, H2O wave 也是主要为此目标设计的工具。

为了在 notebook 中使用界面元素,我们需要先导入相关的控件:

1
2
3
from ipywidgets import Button, HBox, VBox, Textarea, Layout,Output, Box

from IPython.display import display

在一个单元格中,如果最后的输出是一个对象,那么 notebook 将会直接显示这个对象。如果我们要在一个单元格中显示多个对象,或者,在中间的代码中要显示一些对象,就需要用到 display 这个方法。这是我们上面代码引入 display 的原因。

这里我们引入了 HBox, VBox 和 Box 三个容器类控件,Button, TextArea 这样的功能性控件。


Layout 用来指定控件的样式,比如要指定一个峰值时刻输入框的宽度和高度:

1
2
3
4
5
6
peaks_box = Textarea(
    value='',
    placeholder='请输入峰值时间,每行一个',
    description='峰值时间',
    layout=Layout(width='40%',height='100px')
)

按钮类控件一般需要指定点击时执行的动作,我们通过 on_click 方法,将点击事件和一个事件处理方法相绑定:

1
2
3
4
5
6
7
8
save_button = Button(
    description='存盘'
)
save_button.on_click(save)

def save(c):
    # SAVE DATA TO DISK
    pass
这里要注意的是,事件响应函数(比如这里的 save),在函数签名上一定要带一个参数。否则,当按钮被点击时,事件就无法传导到这个函数中来,并且不会有任何错误提示。

HBox, VBox 用来将子控件按行、列进行排列。比如:

1
2
3
4
5
# K 线图的父容器
figbox = Box(layout=Layout(width="100%"))
inputs = HBox((peaks_box, valleys_box))
buttons = HBox((backward_button, keep_button, save_button, info))
display(VBox((buttons, inputs, figbox)))

Output 控件是比较特殊的一个控件。如果我们在事件响应函数中进行了打印,这些打印是无法像其它单元格中的打印那样,直接输出在单元格下方的。我们必须定义一个 Output 控制,打印的消息将会捕获,并显示在 Output 控件的显示区域中。

1
2
3
4
5
6
7
info = Output(layout=Layout(width="40%"))

def save(c):
    global info
    # DO THE SAVE JOB
    with info:
        print("数据已保存到磁盘!")

与此类似,plotly 绘制的 k 线图,也不能直接显示。我们要通过 go.FigureWidget 来显示 k 线图。

1
2
3
4
5
import plotly.graph_objects as go

figure = ... # draw the candlestick with bars
fig = go.FigureWidget(figure)
figbox.children = (fig, )

我们特别给出这段代码,是要展示更换 k 线图的方法。在初始化时,我们就必须把 figbox 与其它控件一起安排好,但如何更新 figbox 的内容呢?

答案是,让 figbox 成为一个容器,而 go.FigureWidget 成为它的一个子控件。每次要更新 k 线图时,我们生成一个新的 fig 对象,通过figbox.children = (fig, )来替换它。


最后,谈一点 troubleshooting 的方法。所有通过 on_click 方法绑定的事件函数,即使在运行中出了错,也不会有任何提示。因此,我们需要自己捕获错误,再通过 Output 控件来显示错误堆栈:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
def log(msg):
    global info

    info.clear_output()
    with info:
        if isinstance(msg, Exception):
            traceback.print_exc(msg)
        else:
            print(msg)

def on_save(b):
    try:
        # DO SOMETHING MAY CAUSE CHAOS
        raise ValueError()
    except Exception as e:
        log(e)

info = Output(layout = Layout(...))
save_button = Button()
save_button.on_click(on_save)

利用这款工具,大概花了两小时,最终我得到了2万条数据,其中顶底标签约1600个。