课程  因子投资  机器学习  Python  Poetry  ppw  tools  programming  Numpy  Pandas  pandas  算法  hdbscan  聚类  选股  Algo  minimum  numpy  algo  FFT  模式识别  配对交易  GBDT  LightGBM  XGBoost  statistics  CDF  KS-Test  monte-carlo  VaR  回测  过拟合  algorithms  machine learning  strategy  python  sklearn  pdf  概率  数学  面试题  量化交易  策略分类  风险管理  Info  interview  career  xgboost  PCA  wavelet  时序事件归因  SHAP  Figures  Behavioral Economics  graduate  arma  garch  人物  职场  Quantopian  figure  Banz  金融行业  买方  卖方  story  量化传奇  rsi  zigzag  穹顶压力  因子  ESG  因子策略  投资  策略  pe  ORB  Xgboost  Alligator  Indicator  factor  alpha101  alpha  技术指标  wave  quant  algorithm  pearson  spearman  tushare  因子分析  Alphalens  涨停板  herd-behaviour  momentum  因子评估  review  SMC  聪明钱  trade  history  indicators  zscore  波动率  强化学习  顶背离  freshman  resources  others  AI  DeepSeek  network  量子计算  金融交易  IBM  weekly  LLT  backtest  backtrader  研报  papers  UBL  quantlib  jupyter-notebook  scikit-learn  pypinyin  qmt  xtquant  blog  static-site  duckdb  工具  colors  free resources  barra  world quant  Alpha  openbb  数据  risk-management  llm  prompt  CANSLIM  Augment  arsenal  copilot  vscode  code  量化数据存储  hdf5  h5py  cursor  augment  trae  Jupyter  jupysql  pyarrow  parquet  数据源  quantstats  实盘  clickhouse  notebook  redis  remote-agent  AI-tools  Moonshot  回测,研报,tushare 

['人物'] »

高薪金领都用啥编程语言?SQL、Python领航,附排名!


Table of Content

最近两天,收到私信咨询,想进入量化领域难吗?

提问者没有介绍任何自己的背景,也没有明确说明具体要从事什么岗位。因此这是一个无法回答的问题。不过,我会持续跟进这个问题,并给出一些参考资料。

今日焦点:金融界最需要什么样的编程技能。数据来源于Revelio Labs和eFinacialCareers。前者是人力情报数据分析公司,后者是金融专业求职平台。


根据Revelio Labs 的数据,在金融服务业最受欢迎的编程语言前十排名如下:

你可能想不到,SQL在金融领域有着王者般的地位。在整个科技领域,SQL与岗位的相关性只占18%,但在金融招聘领域中,却有25%左右的岗位要求掌握SQL。

当然,也有许多人并不把SQL视为编程语言。老实说,SQL只能视为一种数据库查询语言,我们无法用它来完成数据查询之外的工作。

因此,Python才是真正意义上的王者,不仅仅是在金融领域,根据TIOBE 6月的排名,它仍然位居榜首,并且受欢迎程度在上升中。


但是,金融行业对C++和Rust这样的互联网热门编程语言的需求并不大,尽管这两种语言在高频交易中不可或缺,但毕竟高频交易比较小众、无法吸纳大资金,因此行业的重心不会在这里。

越是低频交易,越能吸纳大量资金。因此,像Python这样尽管性能不佳,但开发快速灵活的语言,在金融界被广泛使用。此外,SQL的大量使用,也证明了金融业对大数据处理能力的要求并不高,大量的数据处理场景仍然可以使用SQL来实现。这也是完全可以理解的,因为在中低频交易广泛使用的财务数据,数据量并不大。

Java位列三甲也是意料之中。大量的事务系统,包括公司网站仍然会使用Java来开发。


Javascript能上榜,很可能也是因为这样的用途。投资公司为了保持神秘和高科技形象,他们的网页也常常做的比较酷炫。比如Millennium(千禧年)的官网上,就常常使用Javascript炫技。在他们最新的主页上,展示了js制作的磁力线效果和各种reveal特效。

千禧官网

这界面丑是丑了点。但理工男的形象是立住了。所以,前端做得好,也是有机会进金融行业的。

R排在第4名也不意外。R语言在数据科学领域被广泛使用,R语言天然有很多统计方案的模块,它的语法简单,支持管道操作,对于临时性的数据分析处理非常友好。SAS上榜的原因也是一样。SAS与R对因子分析都天然支持得很好。统计模块及因子分析,都是金融行业数据分析的基础。


比较令人意外的是VBA。实际上VBA上榜,蕴含了在金融行业必须熟练掌握Excel的意味。所谓熟练掌握Excel,决不是仅仅是指掌握了它基于图形界面的功能,而是要求在关键时刻、复杂功能及快速处理大量数据时,能够使用VBA来编写脚本。

具有强大的编程能力,对于金融领域求职有多重要?我们看一下eFinancial Careers最近发布的一个全球信贷和可转换债券主管岗位,这是一个年薪$50万到$80万之间的工作:

Quote

A renowned investment firm is looking for an Head of global credit and convertible bonds to report to their CIO function ...

Experience

  • Fixed income in preferably a sell-side company
  • Front-office
  • Experience with arbitrage
  • Experience with credit, equities, convertibles, CDS
  • Strong programming skills (Python or R, SQL, Excel or VB)
  • Strong communication skills and ability to work in a team

如果你是一名在校生,可能多少掌握一点SQL和Python,但究竟要达到什么样的程度才算精通呢?

关于Python,在工程技巧方面可以参考我的新书《Python高效编程实战指南》(预定7月开售),算法方面可以多刷leetcode、kaggle的题,或者简街、千禧的puzzle专栏,我们的专栏也不时会有一些性能优化的技巧。

50%

关于SQL,如果是开发岗,需要了解数据分区规划、索引优化、SQL优化等,如果是数据分析岗,则只需要了解如何构建复杂的查询即可。这些查询主要是窗口函数应用、子查询与自连接、复杂条件筛选与分组等。